Inhibition of aminoglycoside acetyltransferase resistance enzymes by metal salts.
نویسندگان
چکیده
Aminoglycosides (AGs) are clinically relevant antibiotics used to treat infections caused by both Gram-negative and Gram-positive bacteria, as well as Mycobacteria. As with all current antibacterial agents, resistance to AGs is an increasing problem. The most common mechanism of resistance to AGs is the presence of AG-modifying enzymes (AMEs) in bacterial cells, with AG acetyltransferases (AACs) being the most prevalent. Recently, it was discovered that Zn(2+) metal ions displayed an inhibitory effect on the resistance enzyme AAC(6')-Ib in Acinetobacter baumannii and Escherichia coli. In this study, we explore a wide array of metal salts (Mg(2+), Cr(3+), Cr(6+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Au(3+) with different counter ions) and their inhibitory effect on a large repertoire of AACs [AAC(2')-Ic, AAC(3)-Ia, AAC(3)-Ib, AAC(3)-IV, AAC(6')-Ib', AAC(6')-Ie, AAC(6')-IId, and Eis]. In addition, we determine the MIC values for amikacin and tobramycin in combination with a zinc pyrithione complex in clinical isolates of various bacterial strains (two strains of A. baumannii, three of Enterobacter cloacae, and four of Klebsiella pneumoniae) and one representative of each species purchased from the American Type Culture Collection.
منابع مشابه
Broad-spectrum peptide inhibitors of aminoglycoside antibiotic resistance enzymes.
The action of aminoglycoside antibiotics is inhibited by chemical modification catalyzed by aminoglycoside inactivating enzymes, which bind these cationic saccharides with active site pockets that contain a preponderance of negatively charged residues. In this study, it was observed that several cationic antimicrobial peptides, representing different structural classes, could serve as inhibitor...
متن کاملPrevalence of Genes Encoding Aminoglycoside Modifying Enzymes in Clinical Isolates of Klebsiella Pneumoniae in the Hospitals of Borujerd
Background and Aims: Given the importance of aminoglycoside resistance in nosocomial and community infections caused by bacterial pathogenes such as Klebsiella pneumoniae (K. pneumoniae), the aim of this study was to determine the frequency of aac (6')- Ib and aac (3)- IIa, the genes encoding aminoglycoside modifying enzymes involved in aminoglycoside resistance. Material and Methods: A t...
متن کاملInhibition of aminoglycoside 6'-N-acetyltransferase type Ib-mediated amikacin resistance by antisense oligodeoxynucleotides.
Amikacin has been very useful in the treatment of infections caused by multiresistant bacteria because it is refractory to the actions of most modifying enzymes. However, the spread of AAC(6')-I-type acetyltransferases, enzymes capable of catalyzing inactivation of amikacin, has rendered this antibiotic all but useless in some parts of the world. The aminoglycoside 6'-N-acetyltransferase type I...
متن کاملPurification and characterization of aminoglycoside-modifying enzymes from Staphylococcus aureus and Staphylococcus epidermidis.
Several strains of Staphylococcus aureus and Staphylococcus epidermidis, exhibiting characteristic resistance patterns to aminoglycoside antibiotics, were examined. The aminoglycoside-modifying enzymes from these strains were purified by DEAE-Sephadex A-50 chromatography, affinity chromatography, and Sephadex G-100 gel filtration. Three enzymes, a 3'-phosphotransferase III (molecular weight, 31...
متن کاملMechanism of resistance to aminoglycoside antibiotics in nebramycin-producing Streptomyces tenebrarius.
Streptomyces tenebrarius ISP 5477, which produces nebramycins, was highly resistant to the following aminoglycoside antibiotics: neamine, ribostamycin, butirosin A, neomycin B, paromomycin, kanamycin A, dibekacin, gentamicin C complex, lividomycin A, istamycin B and streptomycin. Polyphenylalanine synthesis on the ribosomes of this strain was highly resistant to neamine, ribostamycin, butirosin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 59 7 شماره
صفحات -
تاریخ انتشار 2015